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Fracture initiation at a spherical inclusion in 
matrix plastically deformed by shear 
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The critical strain for fracture initiation of a metallic material with a spherical inclusion has 
been analysed using Eshelby's inclusion method for three types of fracture initiation models 
including the recovery effect by diffusion of atoms. When the elastic constant of inclusion 
approaches that of the matrix, the critical strain for fracture initiation becomes large in the 
case of uniform shear deformation of the matrix. It was found that the critical strain becomes 
large due to the diffusion of atoms, especially for inclusions of small size and a large elastic 
constant. The model in which the inclusion is cracked by the localized shear deformation can 
explain the observed inclusion size dependence of the strain for fracture initiation. The inclu- 
sion size dependence of the critical strain for fracture initiation by uniform shear deformation 
of the matrix is different from that by localized shear deformation. Therefore, it is important to 
know which mechanism governs the fracture. 

1. Introduction 
Fracture often initiates by cavitation at the interface 
between matrix and inclusion or by cracking of an 
inclusion when a ductile material containing a spheri- 
cal inclusion is deformed plastically [1-7]. Several 
investigations have been made on the effects of  volume 
fraction, particle spacing and size of  inclusion on the 
plastic strain for fracture initiation [1-3, 6, 7]. 

The fracture initiation at an inclusion was discussed 
based on the dislocation theory [1, 8]. K. Tanaka 
et al. [9] and others [10, 11] investigated the fracture 
initiation at the interface of spherical, disc-like or 
needle-like inclusions under uniaxial tensile stress, 
using Eshelby's inclusion method. The results of  
analysis by K. Tanaka et al. [9] predicted that the 
fracture strain decreases with inclusion size, while 
the analysis based on the dislocation theory indicated 
the opposite inclusion size dependence of  fracture 
strain [12]. Thus, the effect of  inclusion size on fracture 
initiation is not well understood. 

The plastic strain for fracture initiation is usually 
affected by the dynamic recovery. The dynamic recov- 
ery process can be controlled by plastic accommo- 
dation such as cross-slipping of dislocations [13], 
formation of  prismatic loops [14, 15] or local lattice 
rotation [16] at relatively low temperature. The dif- 
fusion of  atoms controls the dynamic recovery process 
around second phase particles at high temperatures 
above about 0.5T m (T m is the melting point of the 
matrix) [17]. The magnitude of  the plastic strain for 
fracture initiation is one of  the important factors in 
the hot working of metallic materials. However, there 
have been few works which treated a diffusional recov- 
ery effect on the fracture associated with an inclusion 
at high temperature [18-20]. 

In this study, the fracture initiation at a spherical 

inclusion in metallic materials was discusssed for three 
types of fracture models using Eshelby's inclusion 
method. An analysis was made to obtain the critical 
plastic strain for fracture initiation in the three cases 
where any recovery effect was not taken into account. 
The plastic strain for fracture initiation where 
diffusional recovery occurs was then calculated, using 
a micromechanics model which incorporated recovery 
effect by diffusion of atoms [19, 20]. Finally, a dis- 
cussion based on the result of the present calculation 
was made on the effects of size and rigidity of inclusion 
on the plastic strain for fracture initiation at high 
temperature. 

2. Analysis 
2.1. Fracture strain under no recovery 
2. 1.1. Cavity initiation at the interface by 

uniform shear deformation 
We consider that a shear stress, a A, is applied to an 
infinite material containing a spherical inclusion ( ~  + 
x~ + x~ = al) which is not deformed plastically, as 
shown in Fig. la. Uniform plastic deformation (e*3" = 
e*( = 7*/2 in the (xl, x2, %) coordinate) is caused in 
the matrix by the applied stress, cry3. The internal 
stress state of this condition is identical with that when 
-e*3'( = - e*l') occurs only in this inclusion [21]. The 
rigidity of  inclusion, #*, is generally different from 
that of the matrix, /~. The actual shear stress in the 
inclusion is equal to the sum of two kinds of  internal 
stresses, which are the stresses due to the inhomogen- 
eity effect, (a13)inh, and plastic deformation effect, 
(aIl3)int, The magnitude of the maximum tensile stress, 
a;3, in the (x~, x;, x;) coordinate (Fig. lb) is identical 
with this shear stress. According to K. Tanaka et al. 
[9], it is assumed that the stress criterion for cavity 
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Figure 1 The initiation by uniform shear defor- 
mation of the matrix at the interface between 
inclusion and matrix. (a) Before cavitation; (b) after 
cavitation. 

initiation is satisfied when the total tensile stress, a~3, 
reaches the theoretical strength of the interface, 

0";3 = (0"Ii3)inh + (0"113)int ~ EIIO or E*/10 (1) 
Therefore, the critical strain for cavitation is 

1 Ira'(1 + v) 0")37i 
7* ~> (7")~¢ - A, ~_ 5 B, ~ - j  (2) 

where, A ~ and B, are shape factors which are shown in 
the Appendix, and m'  is a factor of  rigidity, i.e. m'  = 1 

for m < 1 and m'  = m for m > l, where m = #*/#, 
and v = v* in the calculation. 

The energy criterion for cavitation at the interface is 
satisfied when G1 > G2 [9], where GI and G2 are Gibbs 
free energies before and after cavitation, respectively. 
GI is given by 

G1 1 1 :~/ _A _~,~ ~(O-u)in t ~ V - -  V -- o~ ~ 

! t r 6 ~  V - -  2 ~ G  o l J - - I -  $ 7 !  M (3) 

The first to fourth terms in Equation 3 are the elastic 
energy, the interaction energy, the energy change 
caused by inhomogeneity effect, and the interface 
energy [9]. V is the volume of  an inclusion, and S is the 
surface area of  an inclusion. Since the cavity is 
assumed to be caused by the maximum principal stress 
in the x~ direction, the total tensile stress in this 
direction becomes zero after cavitation at the interface 
[9]. Therefore, the Gibbs free energy after cavitation. 
G2, is given by 

G2 -- l_t~y(~* '  a ** , , ~ ,  ,o~ )' V - ( a ~ ) ( ~ )  V 

1 A / ~ t - -  ~ ( a u ) ( e u )  V + S(7]  + 7M) (4)  

where ( )' indicates the quantity expressed by varia- 
bles in the (X'l, x;, x'3) coordinate after cavitation. The 
fourth term is the sum of the surface energy of 
inclusion (71) and matrix (TM). The values of  (e*)' and 
(e U ) are shown in the Appendix. Then, the critical 
strain for cavitation which satisfies the energy 
criterion is obtained by 

G~ - G2 = ½ ( A I -  A2)#7*2V + ( B ~ -  B2)aA37*V 

. oA3 
+ ½(D, - D 2 J - - V  + (7,-M -- 7[ -- 7M)S > 0 (5) 

# 

where the values ofA~, B~ and D~ are also shown in the 
Appendix. It is assumed in this study that 

7~ = E*ao/ lO,  7M = Eao/lO,  and 7~ M = 17] - -  7il  
[9], where a0 is a lattice constant. Therefore, the critical 
fracture strain can be obtained by solving the quadratic 
equation of (Equation 5) 

15(1 -- v) 0-f3 

7" > (7")~ - 7 - 5v # 

[ lZm' (1  + V)ao] ~ 

+ L ~ - A-~ j (6) 

Cavitation is expected when both criteria given by 
Equation 2 and 6 are satisfied. 

2. 1.2. Internal cracking of an inclusion by 
uniform shear deformation 

In this section, the stress and energy criteria are 
analysed for the internal cracking of an inclusion 
caused by uniform shear deformation of the matrix. 
As shown in Fig. 2a, the crack is caused by the 

,:A \ ~'b ,-TCO'kz - / .  A 
- (O13 \ ~ ~ "  613 

' ~ ~ . . -  C R AC K 

uI3./ "~" rio 

(a )  . Vl3 

612 

(b)  

r 

EXCE SS \ 7C~Tk/./DEFI Cl T 
~,, ,,~'c;"-/ ~.~(..~ 
&137 /~" a~6~ '~/LOCALIZED 
J- ~ J - J . / ~ L . _ _ ~ / _ _  ~:!i,llf SLIP 

l 
| 2 hA 

,{ U I 3  

Figure 2 Internal fracture of an 
inclusion by shear deformation of 
the matrix. (a)Uniform shear 
deformation. (b) Localized shear 
deformation. 



maximum tensile stress. The stress criterion given by 
Equation l should also be satisfied in this case. The 
solution of  critical fracture strain, (7")~, is identical 
with that expressed in Equation 2. If the elastic con- 
stant of  the inclusion is the same as that of  the matrix, 
the Gibbs free energy before cracking is given by 

GI l [ t r l  "~r ~ , , ,  g A * /  = - - (o-~)% V (7) 2 \~i/]i ~ij 

where (o-~)~ is the internal stress before cracking [21]. 
In this case 

7 - 5v 1 ' t  1 
= (~r33); = --2/~ 15(1 -- v) 

and other stress components are zero, since the crack 
within the inclusion can be treated as an oblate sphe- 
roidal inclusion in which the total internal stress is 
zero. Therefore, the Gibbs free energy after cracking 
is obtained by 

G2 - -  k ( ~  I ~'~*/ V / Ax,  8 /  L(trl "~/~*0 V 2\~ij]i°i j  - - -  [Oij) ~ij V -  2k~t)./c~¢] , c  

A ; ~0  1 / 8 0  
- - ( a ~ ) , e  U ~ s ~ ,  (%)  % V + (9) 

where Vc and S~ are the volume and surface area of  a 
crack, respectively. The first and second terms in 
Equation 9 are identical to those in Equation 7. The 
third to sixth terms are the elastic energy of an oblate 
spheroidal inclusion, the interaction energy between 
the internal stress and the applied stress, the inter- 
action energy between the internal stresses of  
inclusion and crack, and the surface energy of the 
crack, respectively. The eigen strains in Equation 9 are 
shown in the Appendix. The critical strain of  energy 
criterion for cracking, (7*)e~, is given by G~ > G2. The 
energy criterion is satisfied, if 

15(1 - v)a)3 [-!35n(1 - v)aol ~ 
7" > (7")~c = 2(7 - 5v)/~ + L 8(7 - 5v)a~ J 

00) 

2. 1.3. Internal cracking of localized shear 
deformation 

Internal cracking of an inclusion by localized slip [22] 
as shown in Fig. 2b is analysed in this section. We 
assumed that the slip band is not restrained at both 
ends. If  there is no obstacle in the slip band, the 
internal stress in it is zero. When the elastic constant 
of  the inclusion is the same as that of  the matrix, the 
internal stress (o-13), occurring by the shear strain" sl3*"ln 
slip band is identical with the value that is presented 
by an oblate spheroidal inclusion with eigen strain 
-e*3' in the matrix. The critical strain of  the stress 
criterion for cracking (7")s¢, is given by 
(a~13) + oA3 ~> #/9. The stress criterion is satisfied, if 

4(1 - v)al 
y* /> (I~*)~ = (/~/9 -- aA)~-_2  v)--~a3 (11) 

The Gibbs free energy before cracking, Gl, is also 
expressed by Equation 7 but V should be replaced by 
the volume of the oblate spheroidal inclusion, Vo, in 
this case. The Gibbs free energy after cracking, (72, is 
given by 

G 2  L e t  A ~ *  V = - -  2 ~ 8 ~  U __ + Sc '~ I  (12) 

where 

2(1 - v)al o-)3 
~'3 = (13) 

n(2 - v)a 3 # 

The energy criterion for cracking is satisfied when 
G~ > G2, and the corresponding strain is expressed by 

4(1 - v)al a~3 
~* > (~*)o~ - 

ZC(2 - -  v )a  3 # 

~3(1 -_ v) o ,l 
+ L5~(2 - ~)a~] (14) 

2.2. Frac ture  s t ra in  u n d e r  d i f f u s i o n a l  r ecove ry  
The diffusion of  atoms occurs around an inclusion at 
high temperature. The plastic deformation in the 
matrix results in an excess and a deficit of  volume in 
the vicinity of an inclusion. Then, migration of atoms 
can occur from the region of  excessive volume to that 
of  deficit of  volume [20]. In this study, the volume 
diffusion and grain boundary diffusion of atoms are 
considered as the recovery process. The excess (or 
deficit) of volume, AV, is given by 7*V/n [19] for the 
uniform shear deformation of  the matrix (Fig. 1). 7* is 
identical with the observed plastic strain, )', when no 
recovery occurs. The measured critical strain for cavi- 
tation, 7c, is defined corresponding to the critical 
strain, y*. The number of atoms, n, contained in A V 
is given by A V/f~, where f~ is atomic volume. The 
driving force, F, for diffusion can be expressed by 
F = ctE~ffSn, where Eel is the elastic strain energy 
described by the first term in Equation 3. Therefore, 
the flux of  atoms is given by [20] 

D rc ~ #A ~ f~D 
J = kIF~ g r ad F  = k T a l V  n (t5) 

where k is Boltzmann's constant, T is the absolute 
temperature, and D is the diffusion constant. Further- 
more, the total cross-section of diffusion, Sa, and the 
diffusion distance for volume diffusion process are 
approximately na~ and a~, respectively. The corre- 
sponding values for grain-boundary diffusion are 
2na~5 (8 is thickness of  the interface and 6 _~ 2b, 
where b is the magnitude of  Burgers vector) and ai, 
respectively [20]. The total migration rate for diffusion 
is given by 

dn dn 0 dn 0 
dt  = dt S a J -  dt C~n (16) 

where no is the number of  atoms produced by the 
applied strain 7 and SdJ is the number of  migration of 
atoms by diffusion. If  Equation 16 is solved by putting 
n = 0 for t = 0 under a constant rate, the solution is 
obtained as [11, 20] 

7* 2, 

The cavitation can occur when 7" reaches the critical 
strain which is given by Equations 2 and 6. The 
observed critical strain, y~, can be also obtained from 
Equation 17. 

In the case of  internal cracking of  inclusion by 
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Figure 3 Relations between the critical strain for 
cavity initiation and the inclusion size by uniform 
shear deformation of the matrix. (a) No recovery, 
(b) recovery by volume diffusion. - - S t r e s s  
condition, - --  energy condition. 

uniform shear deformation, the effect of recovery can 
be taken into account by Equation 17. Shape factor A1 
is given by (7 - 5v)/15(1 - v). 

In the internal cracking by localized shear strain 
(Fig. 2b), the effect of recovery can be considered by 
the same procedure. In this case, AV = 7* V [19] (V is 
the volume of an inclusion), Sa is approximately given 
by rca~ for volume diffusion and 2rca~6 for grain 
boundary diffusion. The diffusion distance is assumed 
to be a~ for both cases, and the shape factor A~ is given 
by 2rc2#(2 - v)aia]/3(1 - v). 

3 .  N u m e r i c a l  c a l c u l a t i o n  a n d  d i s c u s s i o n  
Fig. 3 shows the inclusion size dependence of the 
strain for cavity initiation by uniform shear strain. 7" 
is identical with 7c when no recoevery occurs, a3 is 
assumed to be (2.55 x 10-~°m). As shown in Fig. 3a, 
when no recovery occurs, the critical strain of the 
stress criterion is constant, but that of  the energy 
criterion is inversely proportional to the square root of 
the inclusion size. This tendency is identical with that 
appearing in the plastically deformed material with an 
inclusion under uniaxial tensile stress [9]. Fig. 3b 
shows the critical strain when the recovery by the 
volume diffusion of atoms is taken into account. The 
constants used in the calculation are, Dv = 8.30 x 
10-~Sm2sec i, ~ = 7.10 x 10-6m3mol -~ and ~ = 
1.33 x 10 -4 sec .~ [20]. The critical strain of the stress 
criterion abruptly increases with the decrease of inclu- 
sion size below about 10-sin, and that of the energy 
criterion also increases with the inclusion size below 
about 10-6m. This characteristic is caused by the 
stress relaxation due to the recovery, which occurs to 

a larger extent in a smaller inclusion. The characteris- 
tic of critical strain with the recovery of grain boun- 
dary diffusion was similar to that of volume diffusion. 

Fig. 4 shows the effect of  the difference in rigidity 
between inclusion (#*) and matrix (#) on the critical 
strain for cavity initiation. The critical strain increases 
as the rigidity ratio (m = #*/p) approaches unity. 
This tendency can be observed in both cases with and 
without recovery. It is interesting that the cavitation is 
relatively difficult to initiate in both cases when the 
rigidity of the inclusion approaches that of the matrix. 
The effect of the rigidity ratio on the critical strain is 
very large at high temperatures, especially where the 
ratio is greater than unity. This is attributed to the 
driving force of diffusional recovery being defined by 
the elastic strain energy (Ee0 which is strongly influ- 
enced by the rigidity ratio. 

Fig. 5 shows the critical strain for internal cracking 
by uniform shear strain of  the matrix. The inclusion 
size dependence of the critical strain with or without 
recovery is the same as the corresponding result of 
calculation of cavity initiation in Fig. 4. 

Fig. 6 shows the critical strain for internal cracking 
by localized shear strain. The critical strain for crack 
initiation without recovery increases with the inclu- 
sion size in the stress condition (Fig. 6a). It is also 
known from Fig. 6a that the crack initiation is 
governed by the stress criterion when the inclusion size 
becomes large. The critical strain of energy condition 
increases with the inclusion size for the relatively small 
inclusion size, but with further increase in inclusion 
size it reaches a maximum and then decreases 
abruptly. These tendencies are quite different from 
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Figure 4 Relations between the eriticaI strain for 
cavity initiation and the rigidity ratio (m = g*/#) 
by uniform shear deformation of  the matrix. (a) No 
recovery, (b) recovery by volume diffusion. - -  
Stress condition, - - -  energy condition. 

Figure 5 Relations between the critical strain for 
internal cracking and the inclusion size by uniform 
shear deformation of the matrix. (a) No recovery, 
(b) recovery by volume diffusion. - -  Stress con- 
dition, - - -  energy condition. 
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Figure 6 Relations between the critical strain for 
internal cracking and the inclusion size by localized 
shear deformation of the matrix. (a) No recovery, 
(b) recovery by volume diffusion. - - S t r e s s  
condition, - - -  energy condition. 

those observed in other cases. At high temperatures, 
the critical strain of the stress criterion becomes too 
large to be exceeded owing to the recovery, while the 
energy criterion can be satisfied for a large inclusion 
size (Fig. 6b). 

In this study, we treated the condition where the 
recovery is controlled by the diffusion of atoms. 
Therefore, these results should be recognized as the 
lower band of fracture initiation strain where the other 
recovery process also affects the fracture initiation 
strain. 

It should be noted that the particle size dependence 
of critical strain which occurred by localized shear' 
deformation is quite different from that observed in 
other cases. Fig. 7 shows the experimental results 
obtained by Inoue and Kinoshita [1], and the best fit 
curve of the analytical result by Goods and Brown [12] 
based on the dislocation theory. The particle size 
dependence of fracture initiation strain which was 
obtained by K. Tanaka et al. [9] using a model of 
cavitation by uniform tensile deformation, is different 
from the results shown in Fig. 7 [12]. It is found that 
the model of the internal cracking by localized shear 
strain (Section 2.1.3) gives the same tendency as the 
experimental results shown in Fig. 7, although the 
dynamic recovery such as plastic relaxation [14, 15] or 
lattice rotation [16] is not taken into account in this 
model. The observation of microstructure [1] indi- 
cated that the fracture initiation around the particle 
occurs relatively in the later stages of deformation, 

and that the internal cracking of the inclusion often 
initiates in the material containing the inclusion. 
Moreover, the internal cracking and localized defor- 
mation is reported elsewhere [3, 5, 23, 24]. The actual 
deformation includes both the localized and uniform 
strain components. Therefore, it is necessary for the 
discussion of fracture initiation to know what type of 
fracture occurs in the material considered. 

4 .  C o n c l u s i o n  

The fracture initiation strain of the material con- 
taining a spherical inclusion was calculated using 
Eshelby's inclusion method for the uniform shear 
deformation and the localized shear deformation of 
the matrix. The results obtained are summarized as 
follows. 

1. The effect of recovery by the diffusion of atoms is 
large when the inclusion size is small. However, the 
effect of recovery decreased abruptly with the increase 
of inclusion size and the fracture initiation strain 
approaches that of no recovery. This recovery effect is 
also remarkable when the rigidity of the inclusion is 
large compared with that of the matrix. 

2. The strain for cavity initiation becomes large as 
the rigidity ratio of inclusion to matrix approaches 
unity. This implies that the cavitation is relatively 
difficult to initiate when the rigidity of the inclusion is 
almost the same as that of the matrix. 

3. The model in which the inclusion is cracked by 
the localized shear deformation gives quite different 
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